Generalized Veronesean embeddings of projective spaces
نویسندگان
چکیده
We classify all embeddings θ : PG(n, q) −→ PG(d, q), with d ≥ n(n+3) 2 , such that θ maps the set of points of each line to a set of coplanar points and such that the image of θ generates PG(d, q). It turns out that d = 1 2n(n+3) and all examples are related to the quadric Veronesean of PG(n, q) in PG(d, q) and its projections from subspaces of PG(d, q) generated by sub-Veroneseans (the point sets corresponding to subspaces of PG(n, q)). With an additional condition we generalize this result to the infinite case as well.
منابع مشابه
Generalized lax Veronesean embeddings of projective spaces
We classify all embeddings θ : PG(n,K) −→ PG(d,F), with d ≥ n(n+3) 2 and K,F skew fields with |K| > 2, such that θ maps the set of points of each line of PG(n,K) to a set of coplanar points of PG(d,F), and such that the image of θ generates PG(d,F). It turns out that d = 12n(n+ 3) and all examples “essentially” arise from a similar “full” embedding θ′ : PG(n,K) −→ PG(d,K) by identifying K with ...
متن کاملEmbeddings of Orthogonal Grassmannians
In this paper I survey a few recent results on projective and Veronesean embeddings of orthogonal Grassmannian and propose a few conjectures
متن کاملEmbeddings of small generalized polygons
In this paper we consider some finite generalized polygons, defined over a field with characteristic 2, that admit an embedding in a projective or affine space over a field with characteristic unequal to 2. In particular, we classify the (lax) embeddings of the unique generalized quadrangle H(3, 4) of order (4, 2). We also classify all (lax) embeddings of both the split Cayley hexagon H(2) and ...
متن کاملLower bounds for projective designs, cubature formulas and related isometric embeddings
Yudin’s lower bound [21] for the spherical designs is generalized to the cubature formulas on the projective spaces over a field K ⊂ {R, C, H} and thus to isometric embeddings l 2;K → l p;K with p ∈ 2N. For large p and in some other situations this is essentially better than those known before. AMS Classification: 46B04, 05B30
متن کاملFourth Veronese Embeddings of Projective Spaces
We prove that fourth Veronese embeddings of projective spaces satisfies property N9. This settle the Ottaviani-Paoletti conjecture for fourth Veronese embeddings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 31 شماره
صفحات -
تاریخ انتشار 2011